Deep Learning of Representations for Unsupervised and Transfer Learning
نویسنده
چکیده
Deep learning algorithms seek to exploit the unknown structure in the input distribution in order to discover good representations, often at multiple levels, with higher-level learned features defined in terms of lower-level features. The objective is to make these higherlevel representations more abstract, with their individual features more invariant to most of the variations that are typically present in the training distribution, while collectively preserving as much as possible of the information in the input. Ideally, we would like these representations to disentangle the unknown factors of variation that underlie the training distribution. Such unsupervised learning of representations can be exploited usefully under the hypothesis that the input distribution P (x) is structurally related to some task of interest, say predicting P (y|x). This paper focusses on why unsupervised pre-training of representations can be useful, and how it can be exploited in the transfer learning scenario, where we care about predictions on examples that are not from the same distribution as the training distribution.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised and Transfer Learning Challenge: a Deep Learning Approach
Learning good representations from a large set of unlabeled data is a particularly challenging task. Recent work (see Bengio (2009) for a review) shows that training deep architectures is a good way to extract such representations, by extracting and disentangling gradually higher-level factors of variation characterizing the input distribution. In this paper, we describe different kinds of laye...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملUnsupervised Feature Learning and Deep Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although domain knowledge can be used to help design representations, learning can also be used, and the quest for AI is motivating the design of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012